MATH1520C University Mathematics for Applications

Fall 2021

Chapter 1: Notation and Functions

Learning Objectives:

- (1) Identify the domain of a function, and evaluate a function from an equation.
- (2) Gain familiarity with piecewise functions.
- (3) Study the vertical line test.
- (4) Know how to form and use composite functions.

1.1 Set

- **Set** is a collection of objects (called **elements**)
 - 1. Order of elements does not matter. E.g. $\{1, 2, 3\} = \{3, 2, 1\}$.
 - 2. Representation of a set is not unique. E.g. $\{-2,2\} = \{x \mid x^2 = 4\}$.
- \in : belongs to. If a is an element of A, we say that a belongs to A; denoted as $a \in A$.
- \subset : subset of. Let A, B be two sets such that $\forall a \in A, a \in B$. Then we say that A is a subset of B; denoted as $A \subset B$.

Remark. $A \subset B$ is sometimes written as $A \subseteq B$ to emphasize the fact that A = B is a possibility. If $A \subset B$ but $A \neq B$, then A is said to be a *proper subset* (or a strict subset) of B, written as $A \in B$.

 $A \subset B \Leftrightarrow B \supset A$: B is a supset of A.

Example 1.1.1.

- 1. $A = \{1, 2, 3\}$, $B = \{2, 3, 5, 7\}$, $C = \{1, 2, 3, 4, 5\}$. Then $A \subseteq C$ (in fact $A \in C$), $1 \in A$, but $1 \notin B$ and $B \not\subseteq C$.
- 2. C= the set of all students studying at CUHK. M= the set of all math major students currently studying at CUHK. Then $M\subseteq C$. You $\in C$.

Example 1.1.2. Some important number sets:

- 1. N: the set of all natural numbers (positive integers) = $\{1, 2, 3, \ldots\}$.
- 2. \mathbb{Z} : the set of all integers = $\{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$.
- 3. \mathbb{Q} : the set of all rational numbers $= \{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \}$.

4. \mathbb{R} : the set of all real numbers.

Remark. If the elements in a set can be ordered and the ordering are taken into account in the definition, then it is called an *ordered set*. E.g. $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ may be viewed as ordered sets.

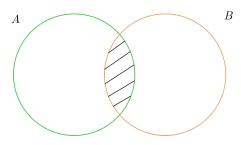
1.2 Intervals

- $[a, b] = \{x \mid a \le x \le b\}$. (closed interval)
- $(a,b) = \{x \mid a < x < b\}$. (open interval)
- $(a, b] = \{x \mid a < x \le b\}.$
- $[a, \infty)$: the set of all real numbers x such that $a \le x$.

Drawing open/closed intervals on the real line:

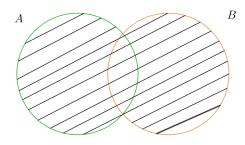
1.3 Set operations

Let A, B be two sets:



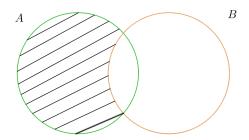
Intersection

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$



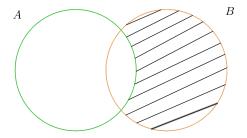
Union

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$



Relative complement of B in A

$$A \backslash B = \{ x \, | \, x \in A \ \text{ and } \ x \notin B \}$$



Relative complement of A in B

 $B \backslash A = \{ x \mid x \in B \text{ and } x \notin A \}$

Remark. Alternate notation for $A \setminus B$: A - B.

Example 1.3.1.

- 1. Let $A=\{1,2,3\}$, $B=\{2,3,4\}$, $C=\{5\}$. $A\cap B=\{2,3\}$, $A\cup B=\{1,2,3,4\}$, $A\backslash B=\{1\}$, $B\backslash A=\{4\}$, $A\backslash C=A$.
- 2. $\mathbb{R}\setminus\{a\}$: the set of all real numbers x, except x=a.
- 3. $A \setminus B = A \setminus (A \cap B)$.

Exercise 1.3.1.

- 1. What are the meanings of the following sets
 - (a) $(-\infty, a)$.
 - (b) $\mathbb{R} \setminus \{1, 2, 3\}$
 - (c) $\mathbb{R}\setminus[2,3)$.
- 2. Show that $\mathbb{R}\setminus[1,\infty)=(-\infty,1)$.

1.4 Functions

Definition 1.4.1. A **function** is a rule that assigns to **EACH** element x in a set A **EXACTLY ONE** element y in a set B. If the function is denoted by f, then we may write

$$f: A \to B$$
.

The set A is called the domain of the function. The set B is called the codomain of f. The assigned elements in B is called the range of f.

 $x \in A$ is the independent variable of f; $y = f(x) \in B$ is the dependent variable of f.

Given $a \in A$, $f(a) \in B$ is said to be the value of the function f at a. Given $S \subset A$,

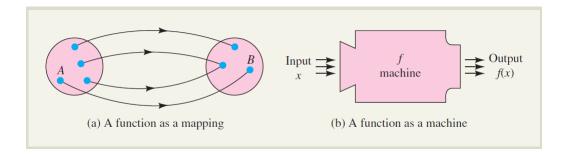
$$f(S) := \{ f(a) \mid a \in S \}$$

is said to be the *image* of S under f. In particular, the "range" of f, as defined above, is $f(A) \subset B$.

When the domain and range of a function are both sets of real numbers, the function is said to be a real-valued function of one variable, and we write

$$f: \mathbb{R} \to \mathbb{R}$$
.

Most functions encountered in this course are real-valued functions of one variable. Unless otherwise specified, a function is a real-valued function of one variable in this course. *Remark.* There is some ambiguity in the definition of "range" in math literature. See the Wiki article. A function $f: A \to B$ is also called a *map from A to B*; A is the *source* of f and B is the *target* of f.



Example 1.4.1. $f:[-1,3)\to\mathbb{R}$ is defined by $f(x)=x^2+4$ (sometimes written as $y=x^2+4$). Then

$$f(0) = (0)^2 + 4 = 4.$$

domain = [-1,3), codomain = \mathbb{R} , range of f = [4,13).

Remark. If a function is given by a formula without domain specified, then assume domain = set of all x for which f(x) is well defined, this domain is also called the natural domain of f.

Example 1.4.2. Find the natural domain of the functions.

1.
$$f(x) = \frac{1}{x-3}$$
.

2.
$$g(t) = \frac{\sqrt{3-2t}}{t^2+4}$$
.

Solution.

- 1. $\frac{1}{x-3}$ is not defined when its denominator x-3=0, i.e. x=3. So the domain is $\mathbb{R}\setminus\{3\}$.
- 2. The domain of $\sqrt{3-2t}$ consists of all x such that $3-2t \geq 0$, which implies that $t \leq \frac{3}{2}$. Hence the domain is $(-\infty, \frac{3}{2}]$.

Example 1.4.3. Let $f(x) = \frac{x^2 - 1}{x - 1}$ and g(x) = x + 1. Can we say f and g are the same function?

Solution. No! The domain of f(x) is $\mathbb{R}\setminus\{1\}$, the domain of g(x) is \mathbb{R} . Only when $x \neq 1$, f(x) = g(x).

1.4.1 Vertical Line Test for Graph

A way to visualize a function is its graph. If f is a real-valued function of one variable, its graph consists of the points in the Cartesian plane \mathbb{R}^2 whose coordinates are the input-output pairs for f. In set notation, the graph is

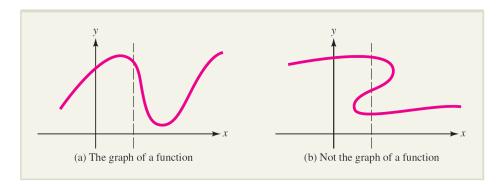
$$\Gamma(f) := \{(x, y) \in \mathbb{R}^2 : x \in \mathbb{R}, y = f(x)\}.$$

Review: Graphing a real-valued function of one variable: [HBSP] 1.2.

Example 1.4.4. linear functions; piecewise linear functions; quadractic functions, exponential and log functions, trig functions.

It is important to realize that not every curve is the graph of a function. For instance, suppose the circle $x^2+y^2=5$ were the graph of some function y=f(x). Then, since the points (1,2) and (1,-2) both lie on the circle, we would have f(1)=2 and f(1)=-2, contrary to the requirement that a function assigns one and only one value to each number in its domain. Geometrically, this happens because the vertical line x=1 intersects the graph of the circle more than once. The vertical line test is a geometric rule for determining whether a curve is the graph of a function.

The Vertical Line Test A curve is the graph of a function if and only if no vertical line intersects the curve more than once:



1.4.2 Some Special Functions

Definition 1.4.2. A piecewise function is defined by more than one formula, with each individual formula defined on a subset of the domain.

Example 1.4.5. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1, & \text{if } x < 0 \\ 2x, & \text{if } x \ge 0. \end{cases}$$

Then
$$f(-1) = 1$$
, $f(0) = 0$ and $f(1) = 2$.

Remark. If all the formulae involved in defining a piecewise function are linear, then the function is said to be *piecewise linear*. E.g. The function in the preceding example.

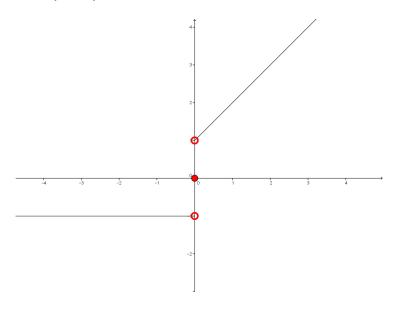
Example 1.4.6. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} -1, & \text{if } |x| \ge \pi\\ \sin x, & \text{if } |x| < \pi. \end{cases}$$

Example 1.4.7. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

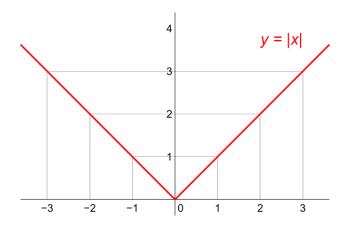
$$f(x) = \begin{cases} x+1, & \text{if } x > 0, \\ 0, & \text{if } x = 0, \\ -1, & \text{if } x < 0. \end{cases}$$

Then f is a piecewise (linear) function.



Example 1.4.8. The absolute value function

$$|x| := \begin{cases} x, & \text{if } x \ge 0, \\ -x, & \text{if } x < 0. \end{cases}$$

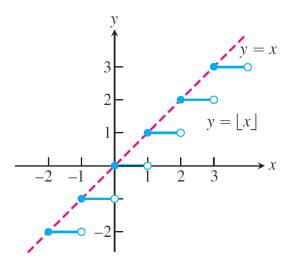


Example 1.4.9. Write f(x) = 2x + |2 - x| as a piecewise function.

Solution. Note that |2-x|=2-x when $2-x\geq 0$, that is $x\leq 2$; and |2-x|=x-2 when 2-x<0, that is, x>2. Hence f(x)=2x+2-x=x+2 if $x\leq 2$, and f(x)=2x+x-2=3x-2 if x>2, or we can write

$$f(x) = \begin{cases} x+2 & \text{if } x \le 2\\ 3x-2 & \text{if } x > 2 \end{cases}.$$

Example 1.4.10. Define the *floor function* as $\lfloor x \rfloor =$ the largest integer $\leq x$. Then $f(x) = \lfloor x \rfloor$ is a piecewise function.



Exercise 1.4.1. Define the *ceiling function* as $\lceil x \rceil =$ the smallest integer $\geq x$. Sketch the graph of $\lceil x \rceil$.

Exercise 1.4.2. Sketch the graph of

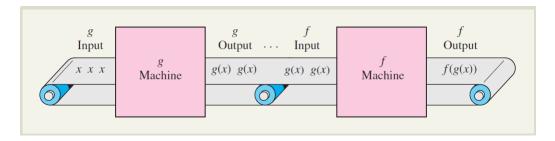
$$f(x) = \begin{cases} x - 2, & \text{if } x > 1, \\ -1, & \text{if } 0 \le x \le 1, \\ x^2, & \text{if } x < 0. \end{cases}$$

1.5 Composition of functions

Definition 1.5.1. Given functions f(u) and g(x), the composition of f and g, denoted by $(f \circ g)(x)$, is a function of x formed by substituting u = g(x) for u in the formula of f(u), i.e.

$$(f \circ g)(x) = f(g(x)).$$

In the following figure, the definition of composite function is illustrated as an assembly line in which raw input x is first converted into a transitional product g(x) that acts as input in f machine uses to produce f(g(x)).



Example 1.5.1. $f(x) = x^2 + 3x + 1$ and g(x) = x + 1. Then

$$(f \circ g)(x) = f(g(x)) = (g(x))^2 + 3(g(x)) + 1 = (x+1)^2 + 3(x+1) + 1$$
$$= (x^2 + 2x + 1) + (3x+3) + 1 = x^2 + 5x + 5$$

Similarly,

$$(g \circ f)(x) = g(f(x)) = f(x) + 1 = x^2 + 3x + 2.$$

Remark. In general, $(f \circ g)(x) \neq (g \circ f)(x)$.

Example 1.5.2. Suppose $f(x) = x^3 - 1$ and h(x) = x - 1, find g(u) such that f(x) = g(h(x)).

Solution.

$$f(x) = x^3 - 1 = (x - 1 + 1)^3 - 1 = (x - 1)^3 + 3(x - 1)^2 + 3(x - 1) = g(u),$$

where we define

$$g(u) = u^3 + 3u^2 + 3u.$$

Alternative solution (change of variables): Set u = h(x) to be the new variable. Then u = x - 1 and x may be expressed in terms of the new variable u as x = u + 1. Plugging this into the formula for f, we have:

$$g(u) = f(x) = (u+1)^3 - 1.$$

Example 1.5.3. Suppose $f(x) = (x-5)^2 + \frac{3}{(x-5)^3}$, find g(u) and h(x) such that f(x) = g(h(x)).

Solution. The form of the given function is

$$f(x) = \Box^2 + \frac{3}{\Box^3},$$

where each box contains the expression x - 5. Thus f(x) = g(h(x)), where

$$g(u) = u^2 + \frac{3}{u^3}$$
 and $h(x) = x - 5$.

Remark. There are many possible answers to the preceding problem, as h(x) can be chosen quite arbitrarily. E.g. one may choose the new variable u=h(x)=x-1, then x=u+1 and

$$g(u) = f(x) = (u-4)^2 + \frac{3}{(u-4)^3}.$$

Definition 1.5.2. A difference quotient for a function f(x) is a composition function of the form

$$\frac{f(x+h) - f(x)}{h}$$

where h is a constant.

Difference quotients are used to compute the slope of a tangent line to the graph and define the derivative, a concept of central importance in calculus.

Example 1.5.4. Find the difference quotient of $f(x) = x^2 - 3x$.

Solution.

$$\frac{f(x+h) - f(x)}{h} = \frac{[(x+h)^2 - 3(x+h)] - [x^2 - 3x]}{h}$$

$$= \frac{[x^2 + 2xh + h^2 - 3x - 3h] - [x^2 - 3x]}{h}$$

$$= \frac{2xh + h^2 - 3h}{h} = 2x + h - 3.$$

Geometric interpretation: As slopes of secant lines to the graph of f. $h \to 0 \leadsto$ tangent lines. Slopes of tangent lines to the graph of $f \leadsto$ derivatives of f.

1.6 Modeling in Business and Economics

Example 1.6.1. A manufacturer can produce dinning room tables at a cost of \$200 each. The table has been selling for \$300 each, and at that price consumers have been buying 400 tables per month. The manufacturer is planning to raise the price of the table and estimates that for each \$1 increase in the price, 2 fewer tables will be sold each month. What price corresponds to the maximum profit, and what is the maximum profit?

Solution. Let x be the price.

Profit for one table
$$= x - 200$$
 Number of tables sold
$$= 400 - 2(x - 300) = 1000 - 2x$$
 Total profit:
$$f(x) = (x - 200)(1000 - 2x)$$

$$= -2x^2 + 1400x - 200000$$

$$= -2(x - 350)^2 + 45000$$

f(x) is maximized when the manufacturer charges \$350 for each table.

Question: How to find max/min for general functions? Calculus helps!